MODIS Instrument Status

Science Team Meeting Greenbelt, MD

May 1, 1996

Thomas S. Pagano

Agenda

- Instrument Development Status
- PFM Performance Update
- Test Program Overview
- Video

Schedule Through Completion

Major Events on PFM Since Last Meeting

- Completed acceptance-level vibration tests of the AOA
- Reworked all AOA objectives to improve bonding; revibe complete
- Schaeffer Magnetics delivered SMA motor/encoder
- Scan Mirror balanced to GSFC/LMAS requirements
- Blackbody Assembly complete
- Solar Diffuser Assembly complete
- Integrated and aligned Scan Mirror Assembly
- Completed electronics module housings
- Installed Mainframe on MSF and MSF on RoTab
- Integrated and aligned ATA into mainframe
- Integrated and aligned OBA into mainframe
- Completed GSE test and data reduction software

Remaining Tasks:

- Complete test, then integrate MEM, SAM, FAM
- Integrate Calibrators: SD, SDSM, SRCA, BB
- Integrate doors and install blankets
- Perform system tests

MODIS PFM Primary Subsystems Complete

96-4-108

RADIATIVE COOLER

AFOCAL TELESCOPE

MAINFRAME

SCAN MIRROR ASSY.

RE-IMAGING OPTICS

FILTER/DICHROICS

FOCAL PLANES

MODIS PFM On-Board Calibrators Near Completion

SANTA BARBARA
REMOTE
SENSING

A HUGHES ELECTRONICS COMPANY

96-4-107

SOLAR DIFFUSER

SRCA

SDSM

BLACKBODY

95-11-171(A)

PFM AOA Test Configuration

Remaining Subsystem Hardware in Test

96-4-109

FAM

DOORS

ACTUATORS

- BLANKETS
- CABLES
- SOFTWARE
 - FLIGHT
 - GSE

MODIS Protoflight in Highbay

SANTA BARBARA
REMOTE
SENSING

ARUGHES LITEGRORIES COMPARY

96-4-104

96-4-102

MODIS Protoflight Integration Set-Up

PERFORMANCE PREDICTIONS FOR PFM

Resource Usage

Radiometric Sensitivity (SNR, NEDT), Dynamic Range

Spatial: Registration, IFOV, MTF, NFR, Stray Light

Spectral: Center Wavelength, Bandwidth, Edge Range,

Out-of-Band

Resource Usage Meets Spec

Power allocations are SBRC goals. See Table 5.1-2 Note 1 for higher UIID allocations.

Power allocations are SBR	Weight		2-orbit Avg	Peak	Avg Data	Peak Data
Item	(kg)	Pwr (W)	Pwr (W)	Pwr (W)	Rate (Mbps)	Rate (Mbps)
Allocation	250	225	225	275	6.2	10.8
Current Estimate*	221.9	127.4	143.5	162.5	6.1	10.6
Previous Estimate	221.4	127.4	143.5	162.5	6.1	10.6
Change from Last Report	0.5	0	0	0	0	0
Margin to Allocation	28.1	97.6	81.5	112.5	0.1	0.2
Basis (%)						
Estimated	14.3	0	0	0	0	0
Calculated	8.2	0	0	0	100	100
Actual	77.4	100	100	100	0	0

^{1] 1-}Orbit Avg is for full orbit of Science without Heated BB configuration.

^{2] 2-}Orbit Avg is average of 1-Orbit Avg value & a full orbit of Science with heated BB calibration.

^{3]} Data rate based on 40% day and 60% night per orbit duty cycle.

^{4]} Power actuals reported for the Science & Heated BB configuration since availability of EM test data.

^{*} Updated power values (slight increase) after completion of EM tests.

PFM SNR/NE∆T Calculations Reflect Good Electronics Performance

Dynamic Range a Concern in NIR

NIR Throughputs higher than spec. will affect dynamic range

Measured and Required Optical System Transmissions

Special test to be performed in May '96 to measure saturation levels

Thermal Design Results in Reduced Temperatures

• Reduced instrument temperature allows 15°C margin to saturation

MODIS HOT CASE OPERATIONAL TEMPERATURES:

(Degree C)	Old Design	New Design	Temp.Red.	
MODIS Inst.	24	20	4	
MEM	34	23	11	
FAM	32	21	11	
SAM	32	14	18	
Scan Mirror	27	23	4	
Afocal Telescope	22	12	10	
Aft Optics Assy.	22	7	15	
Surv.Htr.Power	55 w	83 w	28 w	

Surface Treatments Optimized for Lowest Optics Temperature

4/96 96-0174- 15

When Instrument Cold, Best Accuracy for Warm On-Board Blackbody

Radiometric Accuracy vs OBC Blackbody and Instrument Temperature: From MSAP 32c

Spatial Performance: Alignment Progressing

VIS Correction

Scan -4.27 μm Track +0.23 μm Theta 0.002° EFL 0.99924

NIR Correction

Scan -1.59 μm Track +1.50 μm Theta 0.0376° EFL 0.99918

12	11			8	9	10
ł		4	3			
3 4 5 6 7	2 3 4 6 6 7 0	1 2 2 3 4 5 5 6 7 8 9 10 11 12 14 15 15 17 16 17 16 17 16 17 18 10 10 10 10 10 10 10 10 10 10 10 10 10	1 2 3 4 5 5 5 7 m 9 10 11 12 13 14 15 16 17 16 19 20	1 2 3 4 5 5 6 7 7 8 9 110 110 110 110 110 110 110 110 110 1	1 2 3 4 6 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 3 4 5 6

19	18	13	14	15	16	17
1 2 3 4 4 5 5 6 6 7 7 8 8	1 2 2 3 4 4 6 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 7 7 8 7	111 21 122 22 130 23 131 24 135 26 137 20 137 28	13 21 22 25 23 24 25 25 25 26 27 27 28 28	3 4 5 5 mm 6 7	1 2 3 4 5 6 6 7 8 8	1 2 3 4 6 6 7
10	10	20 80	20 80	10	10	10

- Worst Case VNIR misregistration (5% 1KM Pixel)
- All MTFs in Spec

MODIS Near Field Response Compared to Other Sensors

- Response to 1 x 10 km cloud
- Less than 10⁻⁴ response for MODIS at 3 km
- Contamination is a major player
 - MODIS must maintain approximately level 300
 - -Sea WIFS as measured data
 - AVHRR & CZCS modeled at level 500
- Data generated by GSFC
- Subsystem data acquired at AOA level supports this model

Scatter Model Shows Integrated Stray Light Within Specifications

- Rays were input into the system as collimated light using OARDAS
- Contamination level 400 used
- Input angles were swept from 2.4 degrees (out-of-field) to 63 degrees (Earth subtense) in the Azimuth planes
- Figure shows that
 - 0 deg Azimuth is the -YZ plane
 - 90 deg Azimuth is the +XZ plane
 - 180 deg Azimuth is the +YZ plane
 - 270 deg Azimuth is the -XZ plane
- Once input, rays scatter off surfaces to detector

Results:

- Contamination dominates at level 400
 2x improvement at 300
- Total integrated stray light is 0.3% of image irradiance
- Stray Light specification limit is 0.4%

36 MODIS Spectral Bands Individually Tailored for Best Response

· All profiles modeled for PFM based on component data

PFM Spectral Noncompliances Identified – Waivers Submitted

Out-of-Band Rejection Expected to Be Very Good for MODIS PFM

- Out-of-band response of the MODIS EM shown below; typically 10-3 to 10-5
- High rejection achieved by distributing blocking over many optical surfaces
- PFM results expected to be much better since test set-up improved
- Results represent average response over bandpass of filter used in test
- PFM tests will also include dispersive measurement, $R(\lambda)$

Band	OOB response
1	2.57E-03
2	1.05E-04
3	9.87E-05
4	1.70E- 05
8	1.09E-04
9	5.87E-05
10	4.17E-05
11	1.02E-04
12	3.31E- 05
13	9.60E-07
14	4.72E-04
15	3.60E- 05
16	4.27E-05
17	3.03E-03
18	5.04E-04
19	1.51E-03
20	1.50E- 06
23	9.82E-06
29	5.49E-05
32	1.45E-04
33	2.80E-04
34	2.02E-04
35	7.29E-04

TEST PROGRAM OVERVIEW

Multiple Calibration Sources Used to Calibrate MODIS: Preflight and In-Orbit

MODIS Ground Support Equipment In-Place

SANTA BARBARA
REMOTE
SENSING
A HUGHES ELECTRONICS COMPANY

95-6-47

BLACKBODY CAL SOURCE

SPACEVIEW SOURCE

SPHERICAL INTEGRATOR SOURCE

POLARIZED SOURCE ASSY

INTEGRATION AND ALIGNMENT COLLIMATOR

BENCHTEST COOLER SYSTEM TEST COMPUTERS

SPECTRAL MEASUREMENT ASSY

SCATTER MEASUREMENT ASSY

Test Plan Covers Major Performance Areas

- Radiometric Performance
 - Sensitivity: SNR, NE∆T
 - Linearity
 - Accuracy
 - Stability
- Spatial Performance
 - IFOV. MTF
 - Registration
 - Pointing Accuracy
 - Field of View, Response vs Scan Angle
- Polarization Insensitivity
- Spectral Response
 - In-Band
 - Out-of-band integrated
 - Out-of-band dispersive
- · Stray Light
 - Near Field Response, PSF
 - Spurious Response

- Electrical Tests
 - Fixed Pattern Noise
 - Differential Nonlinearity of A/Ds
 - Electronic Calibration
- On-Board Calibrators
 - Solar test for SD and SDSM
 - Blackbody Calibration
 - SRCA Cross Calibration
- Functional Tests
 - Command and Telemetry
 - Data Stream Verification
 - Door Functional
 - Redundancy
 - Control Systems
- Environmental
 - Temperature cycling; thermal balance
 - Vibration
 - EMC, EMI
- Reduced test program preserves essential characterization and calibration

SRCA Provides Testing at Many Levels

- Thermal Vacuum at SBRC
 - Cross-calibration of radiometric, spatial and spectral performance
- Post delivery testing at LMAS
 - Only source for VNIR/SWIR testing at LMAS
 - Testing can be performed with or without all doors closed in any environment
- In-orbit testing
 - Spatial, Spectral, Radiometric stability monitoring
 - Possibly contamination/scatter monitoring

Proposed Test Area Set-up for Testing MODIS PFM Under Ambient Conditions

95-3-79 (8)

MODIS E.M. Installed in MODIS Calibration Chamber (Interior)

Summary and Conclusions

- All PFM hardware subsystems complete in June
- Optical Bench integrated into Mainframe
 - Aft Optics Assembly (includes all FPAs)
 - Afocal Telescope Assembly
 - Radiative Cooler Assembly
- Scan Mirror Assembly complete and integrated into Mainframe
- Performance models based on component data predict good instrument performance
- Reduced system test program preserves critical pre-flight calibration and characterization
- GSE ready for system test: sources, software, etc.
 Procedures in work